Pages

Ads 468x60px

About

Template Information

Template Information

Test Footer 2

Featured Posts

Selasa, 01 Januari 2013


Gradien
Coba kamu perhatikan dengan saksama Gambar 3.4 berikut ini.

Dari Gambar 3.4 terlihat suatu garis lurus pada bidang koordinat Cartesius. Garis tersebut melalui titik A(–6, –3), B(–4, –2), C(–2, –1), D(2, 1), E(4, 2), dan F(6, 3). Perbandingan antara ordinat (y) dan absis (x) untuk masing-masing titik tersebut adalah sebagai berikut.

Perhatikan perbandingan ordinat dengan absis untuk setiap titik tersebut.
Semua titik memiliki nilai perbandingan yang sama, yaitu 1/2. Nilai tetap atau konstanta dari perbandingan ordinat dan absis ini disebut sebagai gradien.
Biasanya gradien dilambangkan dengan m. Apa sebenarnya yang dimaksud dengan gradien? Coba kamu pelajari uraian berikut ini.

Garis Lurus


A. Pengertian Persamaan Garis Lurus
Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam koordinat Cartesius. Untuk itu, pelajarilah uraian berikut.
1. Koordinat Cartesius
Pada bab sebelumnya, kamu telah mengenal tentang bidang Cartesius. Coba kamu perhatikan Gambar 3.1 dengan seksama. Gambar tersebut menunjukkan bidang koordinat Cartesius yang memiliki sumbu mendatar (disebut
sumbu-x) dan sumbu tegak (disebut sumbu-y). Titik potong kedua sumbu tersebut dinamakan titik asal atau titik pusat koordinat. Pada Gambar 3.1, titik pusat koordinat Cartesius ditunjukkan oleh titik O (0, 0). Sekarang, bagaimana menggambar titik atau garis pada bidang koordinat Cartesius?

a. Menggambar Titik pada Koordinat Cartesius
Setiap titik pada bidang koordinat Cartesius dinyatakan dengan pasangan berurutan x dan y, di mana x merupakan koordinat sumbu-x (disebut absis) dan y merupakan koordinat sumbu-y (disebut ordinat). Jadi, titik pada bidang koordinat Cartesius dapat dituliskan (x, y). Pada Gambar 3.2 , terlihat ada 6 buah titik koordinat pada bidang koordinat Cartesius. Dengan menggunakan aturan penulisan titik koordinat, keenam titik tersebut dapat dituliskan dalam bentuk sebagai berikut.

Rumus ALJABAR - MATEMATIKA kelas VII



 A. BENTUK ALJABAR dan UNSUR-UNSURNYA

Bentuk ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat huruf-huruf untuk mewakili bilangan yang belum diketahui. Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan masalah dalam kehidupan sehari-hari. Hal-hal yang tidak diketahui seperti banyaknya bahan bakar minyak yang dibutuhkan sebuah bis dalam tiap minggu, jarak yang ditempuh dalam waktu tertentu, atau banyaknya makanan ternak yang dibutuhkan dalam 3 hari, dapat dicari dengan menggunakan aljabar.

A. UNSUR - UNSUR ALJABAR 

 1. Variabel, Konstanta, dan Faktor
Perhatikan bentuk aljabar 5x + 3y + 8x – 6y + 9. Pada bentuk aljabar tersebut, huruf x dan y disebut variabel. Variabel adalah lambang pengganti suatu bilangan yang belum diketahui nilainya dengan jelas. Variabel disebut juga peubah. Variabel biasanya dilambangkan dengan huruf kecil a, b, c, ..., z.

Adapun bilangan 9 pada bentuk aljabar di atas disebut konstanta. Konstanta adalah suku dari suatu bentuk aljabar yang berupa bilangan dan tidak memuat variabel. Jika suatu bilangan a dapat diubah menjadi a = p X q dengan a, p, q bilangan bulat, maka p dan q disebut faktor-faktor dari a.

Pada bentuk aljabar di atas, 5x dapat diuraikan sebagai 5x = 5 X x atau 5x = 1 X 5x. Jadi, faktor-faktor dari 5x adalah 1, 5, x, dan 5x. Adapun yang dimaksud koefisien adalah faktor konstanta dari suatu suku pada bentuk aljabar. Perhatikan koefisien masing-masing suku pada bentuk aljabar 5x + 3y + 8x – 6y + 9. Koefisien pada suku 5x adalah 5, pada suku 3y adalah 3, pada suku 8x adalah 8, dan pada suku –6y adalah –6.

Persegi Panjang


Definisi Persegi Panjang

Persegi panjang adalah bangun datar yang mempunyai empat rusuk. Rusuk-rusuknya yang saling berhadapan sama panjang. Persegi panjang mempunyai empat titik sudut dan masing-masing sudutnya adalah siku-siku.
Persegi panjang mempunyai 2 pasang rusuk yang sama panjang, rusuk yang lebih panjang sebut panjang, dan yang lebih pendek disebut lebar

Keliling Persegi Panjang

Keliling persegi panjang adalah jumlah dari seluruh rusuk-rusuknya. 2 buah rusukpanjang dan 2 buah rusuk lebar..

Keliling Persegi Panjang = p+p+l+l
= 2p + 2l
= 2 (p+l)

Jadi, keliling persegi panjang = 2 (p + l)

Jajar Genjang


Definisi Jajar Genjang

Jajar genjang adalah sebuah bangun datar yang mempunyai dua pasang rusuk yang sejajar dan sama panjangnya. Jajar genjang memiliki dua pasang sudut yang bukan siku-siku. Sudut yang berhadapan pada jajar genjang memiliki besar sudut yang sama.
Jajar genjang yang memiliki empat buah rusuk yang sama disebut belah ketupat.
Keliling Jajar genjang
Keliling jajar genjang adalah jumlah dari seluruh rusuknya. Karena rusuk atas sama panjang dengan rusuk alas dan kedua rusuk miringnya sama panjang maka keliling dapat disimpulkan sebagai berikut:
Keliling jajar genjang = rusuk atas + rusuk bawah + rusuk miring1 + rusuk miring2
Di mana: rusuk atas = rusuk bawah(alas); rusuk miring1 = rusuk miring2
Maka dapat diasumsikan menjadi:
Keliling jajar genjang = 2 (alas) + 2 (rusuk miring)
Atau dapat juga diringkas menjadi:
Keliling jajar genjang = 2 (alas + rusuk miring)

Bangun Datar Persegi


Definisi Persegi

Persegi adalah bangun datar yang memiliki empat sisi yang sama panjang.
Sisi persegi biasanya disebut "s" atau "a". (Tergantung dari yang nulis maunya gimana hehehe..)

Keliling Persegi

Keliling itu adalah jumlah dari seluruh jarak yang ditempuh dari satu titik ke titik itu lagi.
Sebagai contoh.. persegi ABCD..
Persegi ABCD memiliki 4 titik sudut. Apabila kita memutari persegi ini dari titik A menuju B, lalu ke C, dan ke D, lalu ke A. maka dari panjang yang kita tempuh adalah keliling persegi.
Kalau digambar seperti ini:

BILANGAN

Bilangan nyata adalah semua bilangan yang dapat ditemukan pada garis bilangan dengan cara penghitungan, pengukuran, atau bentuk geometrik. Bilangan –bilangan tersebut ada di dunia nyata. Ada berbagai macam bilangan yang termasuk dalam bilangan nyata.
  1. Bilangan asli adalah bilangan-bilangan yang terdapat pada garis bilangan berikut disebut bilangan asli. Nama lain dari bilangan ini adalah bilangan hitung atau bilangan yang bernilai positif(integer positif).
{ 1,2,3,4,5,6,7,8,9,..........}
  1. Bilangan Cacah adalah Bilangan asli dengan tambahan bilangan 0
{ 0,1,2,3,4,5,6,7,8,9........}
  1. Bilangan negatif ( integer negatif ) adalah bilangan yang letaknya disebelah kiri nol ( 0 )
Contoh :
-1 , -2, -3, -4, -5,...........
 

Sample text

Sample Text

Sample Text